FAIRCHILD

SEMICONDUCTOR

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

General Description

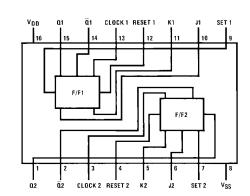
The CD4027BC dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. Each flip-flop has independent J, K, set, reset, and clock inputs and buffered Q and \overline{Q} outputs. These flip-flops are edge sensitive to the clock input and change state on the positive-going transition of the clock pulses. Set or reset is independent of the clock and is accomplished by a high level on the respective input.

All inputs are protected against damage due to static discharge by diode clamps to V_{DD} and $V_{\text{SS}}.$

Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS

October 1987


Revised January 2004

- Low power: 50 nW (typ.)
- Medium speed operation: 12 MHz (typ.) with 10V supply

Ordering Code:

Order Number	Package Number	Package Description
CD4027BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4027BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

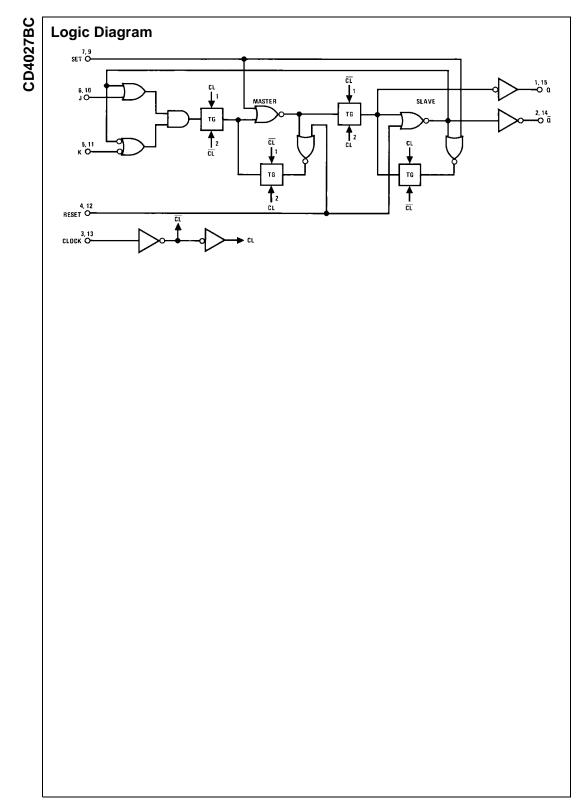
Connection Diagram

Top View

Truth Table

Inputs t _{n-1} (Note 1)						Outputs t _n (Note 2)			
CL (Note 3)	J	К	S	R	Q	Q	Q		
\	Ι	Х	0	0	0	-	0		
~	Х	0	0	0	I	I	0		
~	0	Х	0	0	0	0	I		
~	Х	Т	0	0	Т	0	I		
~	Х	Х	0	0	Х		(No Change)		
х	х	Х	Т	0	Х	Т	0		
х	х	Х	0	Т	Х	0	I		
Х	Х	Х	Т	Т	Х	Т	I		

I = HIGH Level O = LOW Level


- X = Don't Care
- __ = LOW-to-HIGH __ = HIGH-to-LOW

_ = HIGH-to-LOW

Note 1: t_{n-1} refers to the time interval prior to the positive clock pulse transition

Note 2: \mathbf{t}_{n} refers to the time intervals after the positive clock pulse transition

Note 3: Level Change

Absolute Maximum Ratings(Note 4)

(Note 5)	
DC Supply Voltage (V _{DD})	–0.5 V_{DC} to +18 V_{DC}
Input Voltage (V _{IN})	–0.5V to V_{DD} +0.5 V_{DC}
Storage Temperature Range (T_S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 5)

DC Supply Voltage (V_{DD})

Input Voltage (V_{IN})

3V to 15 V_{DC} 0V to V_{DD} V_{DC} CD4027BC

mended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

Note 5: $V_{SS} = 0V$ unless otherwise specified.

Symbol	Parameter	Conditions	-55	–55°C		+25°C			+125°C	
Symbol			Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$		1			1		30	
		$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		2			2		60	μΑ
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		4			4		120	
V _{OL}	LOW Level	I _O < 1 μA								
	Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	I _O < 1 μA								
	Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5			1.5		1.5	
	Input Voltage	$V_{DD} = 10V$, $V_O = 1V$ or $9V$		3.0			3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0			4.0		4.0	
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5		
	Input Voltage	$V_{DD} = 10V$, $V_O = 1V$ or $9V$	7.0		7.0			7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0			11.0		
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	Current (Note 7)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	Current (Note 7)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	
		V _{DD} = 15V, V _{IN} = 15V		0.1		10 ⁻⁵	0.1		1.0	μA

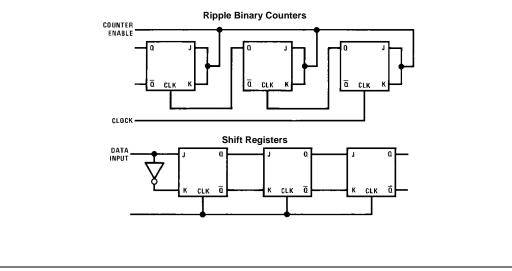
DC Electrical Characteristics (Note 6)

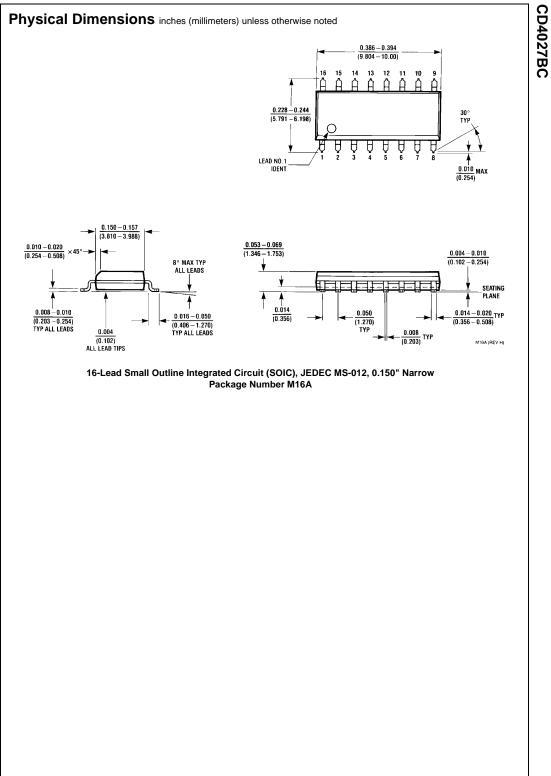
Note 6: $V_{SS} = 0V$ unless otherwise specified.

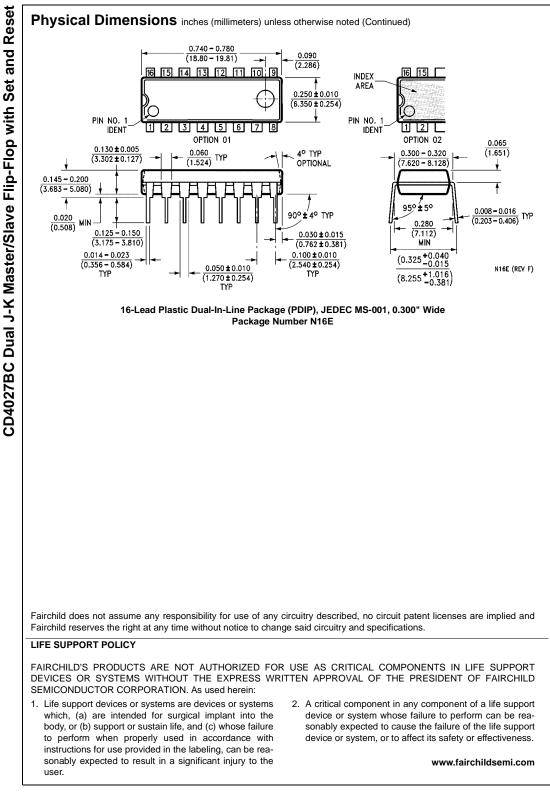
Note 7: I_{OH} and I_{OL} are tested one output at a time.

C)	
ш	
~	
2	
0	
4	
Δ	
C	

. .


AC Electrical Characteristics (Note 8)


 ${\sf T}_A=25^{\circ}C,\ C_L=50\ pF,\ t_{rCL}=t_{fCL}$ = 20 ns, unless otherwise specified Symbol Parameter Conditions Min Тур Max Units t_{PHL} or t_{PLH} Propagation Delay Time V_{DD} = 5V 200 400 from Clock to Q or \overline{Q} $V_{DD} = 10V$ 160 80 ns $V_{DD} = 15V$ 65 130 Propagation Delay Time $V_{DD} = 5V$ 170 340 $t_{\text{PHL}} \text{ or } t_{\text{PLH}}$ from Set to Q or Reset to Q $V_{DD} = 10V$ 70 140 ns $V_{DD} = 15V$ 55 110 Propagation Delay Time $V_{DD} = 5V$ 110 220 $t_{\text{PHL}} \text{ or } t_{\text{PLH}}$ from Set to Q or 50 $V_{DD} = 10V$ 100 ns $V_{DD} = 15V$ Reset to Q 40 80 Minimum Data Setup Time $V_{DD} = 5V$ 135 270 t_S $V_{DD} = 10V$ 55 110 ns $V_{DD} = 15V$ 45 90 $V_{DD} = 5V$ Transition Time 100 $t_{\text{THL}} \text{ or } t_{\text{TLH}}$ 200 $V_{DD} = 10V$ 50 100 ns $V_{DD} = 15V$ 40 80 Maximum Clock Frequency $V_{DD} = 5V$ f_{CL} 2.5 5 (Toggle Mode) $V_{DD} = 10V$ 6.2 12.5 MHz 15.5 $V_{DD} = 15V$ 7.6 $V_{DD} = 5V$ Maximum Clock Rise t_{rCL} or t_{fCL} 15 and Fall Time $V_{DD} = 10V$ 10 μs $V_{DD} = 15V$ 5 Minimum Clock Pulse $V_{DD} = 5V$ 200 100 \mathbf{t}_{W} Width $(t_{WH} = t_{WL})$ $V_{DD} = 10V$ 40 80 ns $V_{DD} = 15V$ 32 65 t_{WH} Minimum Set and $V_{DD} = 5V$ 80 160 Reset Pulse Width $V_{DD} = 10V$ 30 60 ns $V_{DD} = 15V$ 25 50 Average Input Capacitance Any Input 7.5 C_{IN} 5 pF C_{PD} Power Dissipation Capacity Per Flip-Flop 35 pF (Note 9)


Note 8: AC Parameters are guaranteed by DC correlated testing.

Note 9: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C Family Characteristics application note, AN-90.

Typical Applications

